Skip to main content
Contents Index
Calc
Dark Mode Prev Up Next
\(\newcommand{\R}{\mathbb{R}}
\newcommand{\va}{\vec{a}}
\newcommand{\vb}{\vec{b}}
\newcommand{\vc}{\vec{c}}
\newcommand{\vC}{\vec{C}}
\newcommand{\vd}{\vec{d}}
\newcommand{\ve}{\vec{e}}
\newcommand{\cursedihat}{\hat{\dot{i}}}
\newcommand{\vi}{\hat{\imath}}
\newcommand{\vj}{\hat{\jmath}}
\newcommand{\vk}{\hat{k}}
\newcommand{\vn}{\vec{n}}
\newcommand{\vm}{\vec{m}}
\newcommand{\vr}{\vec{r}}
\newcommand{\vs}{\vec{s}}
\newcommand{\vu}{\vec{u}}
\newcommand{\vv}{\vec{v}}
\newcommand{\vw}{\vec{w}}
\newcommand{\vx}{\vec{x}}
\newcommand{\vy}{\vec{y}}
\newcommand{\vz}{\vec{z}}
\newcommand{\vzero}{\vec{0}}
\newcommand{\vF}{\vec{F}}
\newcommand{\vG}{\vec{G}}
\newcommand{\vH}{\vec{H}}
\newcommand{\vR}{\vec{R}}
\newcommand{\vT}{\vec{T}}
\newcommand{\vN}{\vec{N}}
\newcommand{\vL}{\vec{L}}
\newcommand{\vB}{\vec{B}}
\newcommand{\vS}{\vec{S}}
\newcommand{\proj}{\text{proj}}
\newcommand{\comp}{\text{comp}}
\newcommand{\nin}{}
\newcommand{\vecmag}[1]{\left\lVert #1\right\rVert}
\newcommand{\grad}{\nabla}
\newcommand\restrict[1]{\raise-.5ex\hbox{$\Big|$}_{#1}}
\DeclareMathOperator{\curl}{curl}
\DeclareMathOperator{\divg}{div}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Activity 9.8.3 .
This activity gives you an opportunity to graph some equations in polar coordinates where
\(r\) is expressed as a function of
\(\theta\text{.}\)
(a)
The following activity will take you through how to create a graph of an equation in
\(r\) and
\(\theta\text{.}\)
(i)
Draw a graph of
\(y=\cos(x)\) for at least
\(0 \leq x \leq 2 \pi\text{.}\)
(ii)
Consider the polar equation
\(r=\cos(\theta)\text{.}\) Complete the table below by computing the value of
\(r\) for each value of
\(\theta\) for this equation.
\(r\)
\(\phantom{\displaystyle\frac{\sqrt{2}}{2}}\)
(iii)
Plot each of the eleven points you found in the previous part on the polar plane and connect them to make a plot of the graph of
\(r=\cos(\theta)\text{.}\)
(b)
Graph the equation
\(r=1+\cos(\theta)\) in the polar plane.
(c)
Graph the equation
\(r=1-\cos(\theta)\) in the polar plane.
(d)
What are the points of intersections for the graphs of
\(r=1+\cos(\theta)\) and
\(r=1-\cos(\theta)\)