Skip to main content
Contents Index
Calc
Dark Mode Prev Up Next
\(\newcommand{\R}{\mathbb{R}}
\newcommand{\va}{\vec{a}}
\newcommand{\vb}{\vec{b}}
\newcommand{\vc}{\vec{c}}
\newcommand{\vC}{\vec{C}}
\newcommand{\vd}{\vec{d}}
\newcommand{\ve}{\vec{e}}
\newcommand{\cursedihat}{\hat{\dot{i}}}
\newcommand{\vi}{\hat{\imath}}
\newcommand{\vj}{\hat{\jmath}}
\newcommand{\vk}{\hat{k}}
\newcommand{\vn}{\vec{n}}
\newcommand{\vm}{\vec{m}}
\newcommand{\vr}{\vec{r}}
\newcommand{\vs}{\vec{s}}
\newcommand{\vu}{\vec{u}}
\newcommand{\vv}{\vec{v}}
\newcommand{\vw}{\vec{w}}
\newcommand{\vx}{\vec{x}}
\newcommand{\vy}{\vec{y}}
\newcommand{\vz}{\vec{z}}
\newcommand{\vzero}{\vec{0}}
\newcommand{\vF}{\vec{F}}
\newcommand{\vG}{\vec{G}}
\newcommand{\vH}{\vec{H}}
\newcommand{\vR}{\vec{R}}
\newcommand{\vT}{\vec{T}}
\newcommand{\vN}{\vec{N}}
\newcommand{\vL}{\vec{L}}
\newcommand{\vB}{\vec{B}}
\newcommand{\vS}{\vec{S}}
\newcommand{\proj}{\text{proj}}
\newcommand{\comp}{\text{comp}}
\newcommand{\nin}{}
\newcommand{\vecmag}[1]{\left\lVert #1\right\rVert}
\newcommand{\grad}{\nabla}
\newcommand\restrict[1]{\raise-.5ex\hbox{$\Big|$}_{#1}}
\DeclareMathOperator{\curl}{curl}
\DeclareMathOperator{\divg}{div}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Activity 9.4.4 .
Suppose
\(\vu = \langle 3, 5, -1\rangle\) and
\(\vv = \langle 2, -2, 1\rangle\text{.}\)
(a)
Find two unit vectors orthogonal to both
\(\vu\) and
\(\vv\text{.}\)
(b)
Find the volume of the parallelepiped formed by the vectors
\(\vu\text{,}\) \(\vv\text{,}\) and
\(\vw = \langle 3,3,1\rangle\text{.}\)
(c)
Find a vector orthogonal to the parallelogram containing the points
\((0,1,2)\text{,}\) \((4,1,0)\text{,}\) and
\((-2,2,2)\text{.}\)
(d)
Given the vectors
\(\vu\) and
\(\vv\) shown below in
Figure 9.4.10 , sketch the cross products
\(\vu\times\vv\) and
\(\vv\times\vu\text{.}\)
Figure 9.4.10. Vectors \(\vu\) and \(\vv\)
(e)
Are the vectors
\(\va = \langle 1,3,-2\rangle\text{,}\) \(\vb=\langle2,1,-4\rangle\text{,}\) and
\(\vc=\langle 0, 1, 0\rangle\) in standard position coplanar? Use the concepts from this section to explain your answer.