Skip to main content
Contents Index
Calc
Dark Mode Prev Up Next
\(\newcommand{\R}{\mathbb{R}}
\newcommand{\va}{\vec{a}}
\newcommand{\vb}{\vec{b}}
\newcommand{\vc}{\vec{c}}
\newcommand{\vC}{\vec{C}}
\newcommand{\vd}{\vec{d}}
\newcommand{\ve}{\vec{e}}
\newcommand{\cursedihat}{\hat{\dot{i}}}
\newcommand{\vi}{\hat{\imath}}
\newcommand{\vj}{\hat{\jmath}}
\newcommand{\vk}{\hat{k}}
\newcommand{\vn}{\vec{n}}
\newcommand{\vm}{\vec{m}}
\newcommand{\vr}{\vec{r}}
\newcommand{\vs}{\vec{s}}
\newcommand{\vu}{\vec{u}}
\newcommand{\vv}{\vec{v}}
\newcommand{\vw}{\vec{w}}
\newcommand{\vx}{\vec{x}}
\newcommand{\vy}{\vec{y}}
\newcommand{\vz}{\vec{z}}
\newcommand{\vzero}{\vec{0}}
\newcommand{\vF}{\vec{F}}
\newcommand{\vG}{\vec{G}}
\newcommand{\vH}{\vec{H}}
\newcommand{\vR}{\vec{R}}
\newcommand{\vT}{\vec{T}}
\newcommand{\vN}{\vec{N}}
\newcommand{\vL}{\vec{L}}
\newcommand{\vB}{\vec{B}}
\newcommand{\vS}{\vec{S}}
\newcommand{\proj}{\text{proj}}
\newcommand{\comp}{\text{comp}}
\newcommand{\nin}{}
\newcommand{\vecmag}[1]{\left\lVert #1\right\rVert}
\newcommand{\grad}{\nabla}
\newcommand\restrict[1]{\raise-.5ex\hbox{$\Big|$}_{#1}}
\DeclareMathOperator{\curl}{curl}
\DeclareMathOperator{\divg}{div}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Activity 13.4.5 .
Suppose that
\(\vF\) is a continuous path-independent vector field (in
\(\R^2\) or
\(\R^3\) ) on some region
\(D\text{.}\)
(a)
Let
\(P\) and
\(Q\) be points in
\(D\) and let
\(C_1\) and
\(C_2\) be oriented curves from
\(P\) to
\(Q\text{.}\) What can you say about
\(\int_{C_1}\vF\cdot d\vr\) and
\(\int_{C_2}\vF\cdot d\vr\text{?}\)
(b)
Let
\(C = C_1 - C_2\text{.}\) Explain why
\(C\) is a closed curve.
(c)
Calculate
\(\oint_C\vF\cdot d\vr\text{.}\)
(d)
Write a sentence that summarizes what we can conclude about line integrals of
\(\vF\) at this point in the activity.
(e)
Now let us suppose that
\(\vG\) is a continuous vector field on a region
\(D\) for which
\(\oint_C\vG\cdot d\vr = 0\) for all closed curves
\(C\text{.}\) Pick two points
\(P\) and
\(Q\) in
\(D\text{.}\) Let
\(C_1\) and
\(C_2\) be oriented curves from
\(P\) to
\(Q\text{.}\) What type of curve is
\(C = C_1 - C_2\text{?}\)
(f)
What is
\(\oint_C\vG\cdot d\vr\text{?}\) Why?
(g)
What does that tell you about the relationship between
\(\int_{C_1}\vG\cdot d\vr\) and
\(\int_{C_2}\vG\cdot d\vr\text{?}\)
(h)
Explain why this shows that
\(\vG\) is path-independent.