Skip to main content
Contents Index
Calc
Dark Mode Prev Up Next
\(\newcommand{\R}{\mathbb{R}}
\newcommand{\va}{\vec{a}}
\newcommand{\vb}{\vec{b}}
\newcommand{\vc}{\vec{c}}
\newcommand{\vC}{\vec{C}}
\newcommand{\vd}{\vec{d}}
\newcommand{\ve}{\vec{e}}
\newcommand{\cursedihat}{\hat{\dot{i}}}
\newcommand{\vi}{\hat{\imath}}
\newcommand{\vj}{\hat{\jmath}}
\newcommand{\vk}{\hat{k}}
\newcommand{\vn}{\vec{n}}
\newcommand{\vm}{\vec{m}}
\newcommand{\vr}{\vec{r}}
\newcommand{\vs}{\vec{s}}
\newcommand{\vu}{\vec{u}}
\newcommand{\vv}{\vec{v}}
\newcommand{\vw}{\vec{w}}
\newcommand{\vx}{\vec{x}}
\newcommand{\vy}{\vec{y}}
\newcommand{\vz}{\vec{z}}
\newcommand{\vzero}{\vec{0}}
\newcommand{\vF}{\vec{F}}
\newcommand{\vG}{\vec{G}}
\newcommand{\vH}{\vec{H}}
\newcommand{\vR}{\vec{R}}
\newcommand{\vT}{\vec{T}}
\newcommand{\vN}{\vec{N}}
\newcommand{\vL}{\vec{L}}
\newcommand{\vB}{\vec{B}}
\newcommand{\vS}{\vec{S}}
\newcommand{\proj}{\text{proj}}
\newcommand{\comp}{\text{comp}}
\newcommand{\nin}{}
\newcommand{\vecmag}[1]{\left\lVert #1\right\rVert}
\newcommand{\grad}{\nabla}
\newcommand\restrict[1]{\raise-.5ex\hbox{$\Big|$}_{#1}}
\DeclareMathOperator{\curl}{curl}
\DeclareMathOperator{\divg}{div}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Preview Activity 11.2.1 .
In this Preview Activity, we will consider several ideas related to limits of single-variable functions by working with tables, graphs, and the algebraic forms of these functions.
(a)
Let
\(f\) defined by
\(f(x) = 3-x\text{.}\) Complete the table below.
\(x\)
\(-0.2\)
\(-0.1\)
\(-0.01\)
\(0.01\)
\(0.1\)
\(0.2\)
\(f(x)\)
(b)
Write a sentence about what the table in
part a suggests regarding
\(\displaystyle\lim_{x\to 0}f(x)\text{.}\)
(c)
Write a couple of sentences to explain how your values in the table in
part a and
\(\displaystyle\lim_{x\to 0}f(x)\) are demonstrated in the graph below.
(d)
Let
\(\displaystyle g(x) = \frac{x}{|x|}\text{.}\) Fill in the blanks of the table below with the appropriate outputs of
\(g\) for values near
\(x = 0\text{.}\) Note that
\(g\) is not defined at
\(x=0\text{.}\)
\(x\)
\(-0.1\)
\(-0.01\)
\(-0.001\)
\(0.001\)
\(0.01\)
\(0.1\)
\(g(x)\)
(e)
Write a few sentences about what the values in the table in
part d suggests about
\(\displaystyle\lim_{x \to 0}g(x)\text{.}\)
(f)
Write a couple of sentences to explain how your values in the table in
part d and
\begin{equation*}
\lim_{x\to 0} g(x)
\end{equation*}
are demonstrated in the plot below.
(g)
Let
\(\displaystyle h(x)=\frac{1-x^2}{x+1}\text{.}\) At what point(s) is
\(h\) undefined?
(h)
Show that the limit as
\(x\) goes to
\(-1\) of
\(h(x)\) exists. Write a sentence or two about why
\(h(-1)\) does not exist but the limit as
\(x\) goes to
\(-1\) does exist.
(i)
Graph
\(h(x)\) for a region around
\(x=-1\) and explain how this graph relates to your answer to the previous two parts.