Skip to main content
Contents Index
Calc
Dark Mode Prev Up Next
\(\newcommand{\R}{\mathbb{R}}
\newcommand{\va}{\vec{a}}
\newcommand{\vb}{\vec{b}}
\newcommand{\vc}{\vec{c}}
\newcommand{\vC}{\vec{C}}
\newcommand{\vd}{\vec{d}}
\newcommand{\ve}{\vec{e}}
\newcommand{\cursedihat}{\hat{\dot{i}}}
\newcommand{\vi}{\hat{\imath}}
\newcommand{\vj}{\hat{\jmath}}
\newcommand{\vk}{\hat{k}}
\newcommand{\vn}{\vec{n}}
\newcommand{\vm}{\vec{m}}
\newcommand{\vr}{\vec{r}}
\newcommand{\vs}{\vec{s}}
\newcommand{\vu}{\vec{u}}
\newcommand{\vv}{\vec{v}}
\newcommand{\vw}{\vec{w}}
\newcommand{\vx}{\vec{x}}
\newcommand{\vy}{\vec{y}}
\newcommand{\vz}{\vec{z}}
\newcommand{\vzero}{\vec{0}}
\newcommand{\vF}{\vec{F}}
\newcommand{\vG}{\vec{G}}
\newcommand{\vH}{\vec{H}}
\newcommand{\vR}{\vec{R}}
\newcommand{\vT}{\vec{T}}
\newcommand{\vN}{\vec{N}}
\newcommand{\vL}{\vec{L}}
\newcommand{\vB}{\vec{B}}
\newcommand{\vS}{\vec{S}}
\newcommand{\proj}{\text{proj}}
\newcommand{\comp}{\text{comp}}
\newcommand{\nin}{}
\newcommand{\vecmag}[1]{\left\lVert #1\right\rVert}
\newcommand{\grad}{\nabla}
\newcommand\restrict[1]{\raise-.5ex\hbox{$\Big|$}_{#1}}
\DeclareMathOperator{\curl}{curl}
\DeclareMathOperator{\divg}{div}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Activity 9.3.2 .
(a)
Determine each of the following.
(i)
\(\langle 1, 2, -3 \rangle \cdot \langle 4, -2, 0 \rangle\)
(ii)
\(\langle 0, 3, -2, 1 \rangle \cdot \langle 5, -6, 0, 4 \rangle\)
(b)
Let
\(\vu,\vv,\vw\) be vectors in
\(\R^n\text{.}\) Suppose that you know that
\(\vu\cdot \vw = 10\) and
\(\vv\cdot \vw = -3\text{.}\) Compute
\((\vu+\vv)\cdot \vw\text{.}\)
(c)
Let
\(\vu,\vv\) be vectors in
\(\R^n\text{.}\) Suppose that you know that
\(\vu\cdot \vv = 3\text{,}\) \(\vecmag{\vu} = 4\text{,}\) and
\(\vecmag{\vv} = 7\text{.}\) Compute
\((\vu+\vv)\cdot (\vu+\vv)\text{.}\)
(d)
Let
\(\vu,\vv\) be vectors in
\(\R^n\text{.}\) For what value of
\(t\) is
\((t\vu + \vv) dot \vv =0\text{?}\)