Skip to main content
Contents Index
Calc
Dark Mode Prev Up Next
\(\newcommand{\R}{\mathbb{R}}
\newcommand{\va}{\vec{a}}
\newcommand{\vb}{\vec{b}}
\newcommand{\vc}{\vec{c}}
\newcommand{\vC}{\vec{C}}
\newcommand{\vd}{\vec{d}}
\newcommand{\ve}{\vec{e}}
\newcommand{\cursedihat}{\hat{\dot{i}}}
\newcommand{\vi}{\hat{\imath}}
\newcommand{\vj}{\hat{\jmath}}
\newcommand{\vk}{\hat{k}}
\newcommand{\vn}{\vec{n}}
\newcommand{\vm}{\vec{m}}
\newcommand{\vr}{\vec{r}}
\newcommand{\vs}{\vec{s}}
\newcommand{\vu}{\vec{u}}
\newcommand{\vv}{\vec{v}}
\newcommand{\vw}{\vec{w}}
\newcommand{\vx}{\vec{x}}
\newcommand{\vy}{\vec{y}}
\newcommand{\vz}{\vec{z}}
\newcommand{\vzero}{\vec{0}}
\newcommand{\vF}{\vec{F}}
\newcommand{\vG}{\vec{G}}
\newcommand{\vH}{\vec{H}}
\newcommand{\vR}{\vec{R}}
\newcommand{\vT}{\vec{T}}
\newcommand{\vN}{\vec{N}}
\newcommand{\vL}{\vec{L}}
\newcommand{\vB}{\vec{B}}
\newcommand{\vS}{\vec{S}}
\newcommand{\proj}{\text{proj}}
\newcommand{\comp}{\text{comp}}
\newcommand{\nin}{}
\newcommand{\vecmag}[1]{\left\lVert #1\right\rVert}
\newcommand{\grad}{\nabla}
\newcommand\restrict[1]{\raise-.5ex\hbox{$\Big|$}_{#1}}
\DeclareMathOperator{\curl}{curl}
\DeclareMathOperator{\divg}{div}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Activity 12.8.6 .
Consider the solid
\(S'\) defined by the inequalities
\(0 \leq x \leq 2\text{,}\) \(\frac{x}{2} \leq y \leq \frac{x}{2}+1\text{,}\) and
\(0 \leq z \leq 6\text{.}\) Consider the transformation defined by
\(s = \frac{x}{2}\text{,}\) \(t = \frac{x-2y}{2}\text{,}\) and
\(u = \frac{z}{3}\text{.}\) Let
\(f(x,y,x) = x-2y+z\text{.}\)
(a)
The transformation turns the solid
\(S'\) in
\(xyz\) -coordinates into a box
\(S\) in
\(stu\) -coordinates. Apply the transformation to the boundries of the solid
\(S'\) to find
\(stu\) -coordinate descriptions of the box
\(S\text{.}\)
(b)
Compute and simplify the Jacobian
\(\frac{\partial(x,y,z)}{\partial(s,t,u)}\text{.}\)
(c)
Use the transformation to perform a change of variables and evaluate \(\iiint_{S'} f(x,y,z) \, dV\) by evaluating
\begin{equation*}
\iiint_{S} f(x(s,t,u),y(s,t,u),z(s,t,u)) \ \left| \frac{\partial(x,y,z)}{\partial(s,t,u)} \right| \, ds \, dt \, du
\end{equation*}