Skip to main content

Active Calculus - Multivariable

Activity 12.3.2.
Let \(D\) be the region inside the unit circle centered at the origin, let \(R\) be the right half of \(D\text{,}\) and let \(B\) be the bottom half of \(D\text{.}\)
(a)
On 3 separate plots, graph and label the regions \(D\text{,}\) \(R\text{,}\) and \(B\text{.}\)
(b)
For each double integral below, decide without calculation whether the double integral will be positive, negative, or zero. You should write a couple of sentences to explain your answer for each part.
  1. \(\displaystyle \iint_D \; dA\)
  2. \(\displaystyle \iint_D \; x \; dA\)
  3. \(\displaystyle \iint_B \; x \; dA\)
  4. \(\displaystyle \iint_R \; x \; dA\)
  5. \(\displaystyle \iint_D \; x^2 \; dA\)
  6. \(\displaystyle \iint_B \; -x^2 \; dA\)
  7. \(\displaystyle \iint_R \; -e^x \; dA\)
  8. \(\displaystyle \iint_B \; e^y \; dA\)
  9. \(\displaystyle \iint_D \; xy \; dA\)