Skip to main content

Active Calculus - Multivariable

Activity 11.3.6.
Shown below in Figure 11.3.11 is a contour plot of a function \(f\text{.}\) The values of the function on a few of the contours are indicated to the left of the figure.
Figure 11.3.11. A plot of \(f(t)=M(0.03,t)\)
(a)
Estimate the partial derivative \(f_x(-2,-1)\text{.}\) (Hint: How can you find values of \(f\) that are of the form \(f(-2+h)\) and \(f(-2-h)\) so that you can use a symmetric difference quotient?)
(b)
Estimate the partial derivative \(f_y(-2,-1)\text{.}\)
(c)
Estimate the partial derivatives \(f_x(-1,2)\) and \(f_y(-1,2)\text{.}\)
(d)
Locate, if possible, one point \((x,y)\) where \(f_x(x,y)= 0\text{.}\)
(e)
Locate, if possible, one point \((x,y)\) where \(f_x(x,y)\lt 0\text{.}\)
(f)
Locate, if possible, one point \((x,y)\) where \(f_y(x,y)>0\text{.}\)