Skip to main content

Active Calculus - Multivariable

Activity 11.3.3.
(a)
If \(f(x,y) = 3x^3 - 2x^2y^5\text{,}\) find the partial derivatives \(f_x\) and \(f_y\text{.}\)
(b)
If \(f(x,y) = \displaystyle\frac{xy^2}{x+1}\text{,}\) find the partial derivatives \(f_x\) and \(f_y\text{.}\)
(c)
If \(g(r,s) = rs\cos(r)\text{,}\) find the partial derivatives \(g_r\) and \(g_s\text{.}\)
(d)
Assuming \(f(w,x,y) = (6w+1)\cos(3x^2+4xy^3+y)\text{,}\) find the partial derivatives \(f_w\text{,}\) \(f_x\text{,}\) and \(f_y\text{.}\)
(e)
Find all possible first-order partial derivatives of \(q(x,t,z) = \displaystyle \frac{x2^tz^3}{1+x^2}.\)