Skip to main content
Contents Index
Calc
Dark Mode Prev Up Next
\(\newcommand{\R}{\mathbb{R}}
\newcommand{\va}{\vec{a}}
\newcommand{\vb}{\vec{b}}
\newcommand{\vc}{\vec{c}}
\newcommand{\vC}{\vec{C}}
\newcommand{\vd}{\vec{d}}
\newcommand{\ve}{\vec{e}}
\newcommand{\cursedihat}{\hat{\dot{i}}}
\newcommand{\vi}{\hat{\imath}}
\newcommand{\vj}{\hat{\jmath}}
\newcommand{\vk}{\hat{k}}
\newcommand{\vn}{\vec{n}}
\newcommand{\vm}{\vec{m}}
\newcommand{\vr}{\vec{r}}
\newcommand{\vs}{\vec{s}}
\newcommand{\vu}{\vec{u}}
\newcommand{\vv}{\vec{v}}
\newcommand{\vw}{\vec{w}}
\newcommand{\vx}{\vec{x}}
\newcommand{\vy}{\vec{y}}
\newcommand{\vz}{\vec{z}}
\newcommand{\vzero}{\vec{0}}
\newcommand{\vF}{\vec{F}}
\newcommand{\vG}{\vec{G}}
\newcommand{\vH}{\vec{H}}
\newcommand{\vR}{\vec{R}}
\newcommand{\vT}{\vec{T}}
\newcommand{\vN}{\vec{N}}
\newcommand{\vL}{\vec{L}}
\newcommand{\vB}{\vec{B}}
\newcommand{\vS}{\vec{S}}
\newcommand{\proj}{\text{proj}}
\newcommand{\comp}{\text{comp}}
\newcommand{\nin}{}
\newcommand{\vecmag}[1]{\left\lVert #1\right\rVert}
\newcommand{\grad}{\nabla}
\newcommand\restrict[1]{\raise-.5ex\hbox{$\Big|$}_{#1}}
\DeclareMathOperator{\curl}{curl}
\DeclareMathOperator{\divg}{div}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Activity 11.2.3 .
Let’s consider the function \(g\) defined by
\begin{equation*}
g(x,y) = \frac{x^2y}{x^4 + y^2}
\end{equation*}
and investigate the limit \(\displaystyle{\lim_{(x,y)\to(0,0)}g(x,y)}\text{.}\)
(a)
What is the behavior of
\(g\) on the
\(x\) -axis? That is, what is
\(g(x,0)\) and what is the limit of
\(g\) as
\((x,y)\) approaches
\((0,0)\) along the
\(x\) -axis?
(b)
What is the behavior of
\(g\) on the
\(y\) -axis? That is, what is
\(g(0,y)\) and what is the limit of
\(g\) as
\((x,y)\) approaches
\((0,0)\) along the
\(y\) -axis?
(c)
What is the behavior of
\(g\) on the line
\(y=mx\text{?}\) That is, what is
\(g(x,mx)\) and what is the limit of
\(g\) as
\((x,y)\) approaches
\((0,0)\) along the line
\(y=mx\text{?}\)
(d)
Based on what you have seen so far, do you think
\(\lim_{(x,y)\to(0,0)}g(x,y)\) exists? If so, what do you think its value is?
(e)
Now consider the behavior of
\(g\) on the parabola
\(y=x^2\text{?}\) What is
\(g(x,x^2)\) and what is the limit of
\(g\) as
\((x,y)\) approaches
\((0,0)\) along this parabola?
(f)
State whether you think the limit
\(\displaystyle{\lim_{(x,y)\to(0,0)} g(x,y)}\) exists or not and provide a justification of your statement.