Skip to main content
Contents Index
Calc
Dark Mode Prev Up Next
\(\newcommand{\R}{\mathbb{R}}
\newcommand{\va}{\vec{a}}
\newcommand{\vb}{\vec{b}}
\newcommand{\vc}{\vec{c}}
\newcommand{\vC}{\vec{C}}
\newcommand{\vd}{\vec{d}}
\newcommand{\ve}{\vec{e}}
\newcommand{\cursedihat}{\hat{\dot{i}}}
\newcommand{\vi}{\hat{\imath}}
\newcommand{\vj}{\hat{\jmath}}
\newcommand{\vk}{\hat{k}}
\newcommand{\vn}{\vec{n}}
\newcommand{\vm}{\vec{m}}
\newcommand{\vr}{\vec{r}}
\newcommand{\vs}{\vec{s}}
\newcommand{\vu}{\vec{u}}
\newcommand{\vv}{\vec{v}}
\newcommand{\vw}{\vec{w}}
\newcommand{\vx}{\vec{x}}
\newcommand{\vy}{\vec{y}}
\newcommand{\vz}{\vec{z}}
\newcommand{\vzero}{\vec{0}}
\newcommand{\vF}{\vec{F}}
\newcommand{\vG}{\vec{G}}
\newcommand{\vH}{\vec{H}}
\newcommand{\vR}{\vec{R}}
\newcommand{\vT}{\vec{T}}
\newcommand{\vN}{\vec{N}}
\newcommand{\vL}{\vec{L}}
\newcommand{\vB}{\vec{B}}
\newcommand{\vS}{\vec{S}}
\newcommand{\proj}{\text{proj}}
\newcommand{\comp}{\text{comp}}
\newcommand{\nin}{}
\newcommand{\vecmag}[1]{\left\lVert #1\right\rVert}
\newcommand{\grad}{\nabla}
\newcommand\restrict[1]{\raise-.5ex\hbox{$\Big|$}_{#1}}
\DeclareMathOperator{\curl}{curl}
\DeclareMathOperator{\divg}{div}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Activity 13.3.4 .
Let
\(\vF(x,y) = \langle y^2,2xy+3\rangle\text{.}\)
(a)
Let
\(C_1\) be the portion of the graph of
\(y=2x^3+3x^2-12x-15\) from
\((-2,5)\) to
\((3,30)\text{.}\) Calculate
\(\int_{C_1}\vF\cdot d\vr\text{.}\)
(b)
Let
\(C_2\) be the line segment from
\((-2,5)\) to
\((3,30)\text{.}\) Calculate
\(\int_{C_2}\vF\cdot d\vr\text{.}\)
(c)
Let
\(C_3\) be the circle of radius
\(3\) centered at the origin, oriented counterclockwise. Calculate
\(\oint_{C_3} \vF\cdot d\vr\text{.}\)
(d)
To connect the previous parts of this activity, use a graphing utility to plot the curves
\(C_1\) and
\(C_2\) on the same axes.
(i)
What type of curve is
\(C_1 - C_2\text{?}\)
(ii)
What is the value of
\(\oint_{C_1-C_2}\vF\cdot d\vr\text{?}\)
(iii)
What does your answer to
part c allow you to say about the value of the line integral of
\(\vF\) along the top half of
\(C_3\) compared to the line integral of
\(\vF\) from
\((3,0)\) to
\((-3,0)\) along the bottom half of the circle of radius
\(3\) centered at the origin?