Activity 11.4.4.
As we saw in Activity 11.3.5, the wind chill \(w(v,T)\text{,}\) in degrees Fahrenheit, is a function of the wind speed, in miles per hour, and the air temperature, in degrees Fahrenheit. Some values of the wind chill are recorded in the table below.
\(v \backslash T\) | \(-20\) | \(-15\) | \(-10\) | \(-5\) | \(0\) | \(5\) | \(10\) |
\(10\) | \(-41\) | \(-35\) | \(-28\) | \(-22\) | \(-16\) | \(-10\) | \(-4\) |
\(15\) | \(-45\) | \(-39\) | \(-32\) | \(-26\) | \(-19\) | \(-13\) | \(-7\) |
\(20\) | \(-48\) | \(-42\) | \(-35\) | \(-29\) | \(-22\) | \(-15\) | \(-9\) |
\(25\) | \(-51\) | \(-44\) | \(-37\) | \(-31\) | \(-24\) | \(-17\) | \(-11\) |
\(30\) | \(-53\) | \(-46\) | \(-39\) | \(-33\) | \(-26\) | \(-19\) | \(-12\) |
\(35\) | \(-55\) | \(-48\) | \(-41\) | \(-34\) | \(-27\) | \(-21\) | \(-14\) |
(a)
Estimate the partial derivatives \(w_{T}(20,-15)\text{,}\) \(w_{T}(20,-10)\text{,}\) and \(w_T(20,-5)\text{.}\) Use these results to estimate the second-order partial \(w_{TT}(20, -10)\text{.}\)
(b)
In a similar way, estimate the second-order partial \(w_{vv}(20,-10)\text{.}\)
(c)
Estimate the partial derivatives \(w_T(20,-10)\text{,}\) \(w_T(25,-10)\text{,}\) and \(w_T(15,-10)\text{,}\) and use your results to estimate the partial \(w_{Tv}(20,-10)\text{.}\)
(d)
In a similar way, estimate the partial derivative \(w_{vT}(20,-10)\text{.}\)
(e)
Write a few sentences to explain what the values \(w_{TT}(20, -10)\text{,}\) \(w_{vv}(20,-10)\text{,}\) and \(w_{Tv}(20,-10)\) indicate regarding the behavior of \(w(v,T)\text{.}\)