Skip to main content
Contents Index
Calc
Dark Mode Prev Up Next
\(\newcommand{\R}{\mathbb{R}}
\newcommand{\va}{\vec{a}}
\newcommand{\vb}{\vec{b}}
\newcommand{\vc}{\vec{c}}
\newcommand{\vC}{\vec{C}}
\newcommand{\vd}{\vec{d}}
\newcommand{\ve}{\vec{e}}
\newcommand{\cursedihat}{\hat{\dot{i}}}
\newcommand{\vi}{\hat{\imath}}
\newcommand{\vj}{\hat{\jmath}}
\newcommand{\vk}{\hat{k}}
\newcommand{\vn}{\vec{n}}
\newcommand{\vm}{\vec{m}}
\newcommand{\vr}{\vec{r}}
\newcommand{\vs}{\vec{s}}
\newcommand{\vu}{\vec{u}}
\newcommand{\vv}{\vec{v}}
\newcommand{\vw}{\vec{w}}
\newcommand{\vx}{\vec{x}}
\newcommand{\vy}{\vec{y}}
\newcommand{\vz}{\vec{z}}
\newcommand{\vzero}{\vec{0}}
\newcommand{\vF}{\vec{F}}
\newcommand{\vG}{\vec{G}}
\newcommand{\vH}{\vec{H}}
\newcommand{\vR}{\vec{R}}
\newcommand{\vT}{\vec{T}}
\newcommand{\vN}{\vec{N}}
\newcommand{\vL}{\vec{L}}
\newcommand{\vB}{\vec{B}}
\newcommand{\vS}{\vec{S}}
\newcommand{\proj}{\text{proj}}
\newcommand{\comp}{\text{comp}}
\newcommand{\nin}{}
\newcommand{\vecmag}[1]{\left\lVert #1\right\rVert}
\newcommand{\grad}{\nabla}
\newcommand\restrict[1]{\raise-.5ex\hbox{$\Big|$}_{#1}}
\DeclareMathOperator{\curl}{curl}
\DeclareMathOperator{\divg}{div}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Activity 11.9.5 .
Let
\(f(x,y) = x^2-3y^2-4x+6y\) with triangular domain
\(R\) whose vertices are at
\((0,0)\text{,}\) \((4,0)\text{,}\) and
\((0,4)\text{.}\) The domain
\(R\) is illustrated below. In this activity, you will carry out the steps to find the absolute maximum and absolute minimum of
\(f\) on
\(R\text{.}\)
(a)
Find all of the critical points of
\(f\) in
\(R\text{.}\)
(b)
Parameterize the edge of
\(R\) that is on the
\(x\) -axis and find the critical points of
\(f\) on that edge.
Hint .
You may need to consider endpoints.
(c)
Parameterize the edge of
\(R\) that is on the
\(y\) -axis and find the critical points of
\(f\) on that edge.
Hint .
You may need to consider endpoints.
(d)
Parameterize the diagonal edge of
\(R\) and find the critical points of
\(f\) on that edge.
Hint .
You may need to consider endpoints.
(e)
Find the absolute maximum and absolute minimum values of
\(f\) on
\(R\text{.}\) Write a couple of sentences to describe how the surface plot of
\(f\) shown below illustrates your results.