Skip to main content
Contents Index
Calc
Dark Mode Prev Up Next
\(\newcommand{\R}{\mathbb{R}}
\newcommand{\va}{\vec{a}}
\newcommand{\vb}{\vec{b}}
\newcommand{\vc}{\vec{c}}
\newcommand{\vC}{\vec{C}}
\newcommand{\vd}{\vec{d}}
\newcommand{\ve}{\vec{e}}
\newcommand{\cursedihat}{\hat{\dot{i}}}
\newcommand{\vi}{\hat{\imath}}
\newcommand{\vj}{\hat{\jmath}}
\newcommand{\vk}{\hat{k}}
\newcommand{\vn}{\vec{n}}
\newcommand{\vm}{\vec{m}}
\newcommand{\vr}{\vec{r}}
\newcommand{\vs}{\vec{s}}
\newcommand{\vu}{\vec{u}}
\newcommand{\vv}{\vec{v}}
\newcommand{\vw}{\vec{w}}
\newcommand{\vx}{\vec{x}}
\newcommand{\vy}{\vec{y}}
\newcommand{\vz}{\vec{z}}
\newcommand{\vzero}{\vec{0}}
\newcommand{\vF}{\vec{F}}
\newcommand{\vG}{\vec{G}}
\newcommand{\vH}{\vec{H}}
\newcommand{\vR}{\vec{R}}
\newcommand{\vT}{\vec{T}}
\newcommand{\vN}{\vec{N}}
\newcommand{\vL}{\vec{L}}
\newcommand{\vB}{\vec{B}}
\newcommand{\vS}{\vec{S}}
\newcommand{\proj}{\text{proj}}
\newcommand{\comp}{\text{comp}}
\newcommand{\nin}{}
\newcommand{\vecmag}[1]{\left\lVert #1\right\rVert}
\newcommand{\grad}{\nabla}
\newcommand\restrict[1]{\raise-.5ex\hbox{$\Big|$}_{#1}}
\DeclareMathOperator{\curl}{curl}
\DeclareMathOperator{\divg}{div}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Activity 11.7.2 .
In this activity, we will use
equation (11.7.2) to calculate and interpret directional derivatives for the function
\(f(x,y) = 3xy-x^2y^3\text{.}\)
(a)
Calculate
\(f_x(x,y)\) and
\(f_y(x,y)\text{.}\)
(b)
Use
equation (11.7.2) to determine
\(D_{\vi} f(x,y)\) and
\(D_{\vj} f(x,y)\text{.}\) Write a couple of sentences to describe what familiar functions
\(D_{\vi} f\) and
\(D_{\vj} f\) are.
Hint .
Remember that
\(\vi\) is the unit vector in the positive
\(x\) -direction and
\(\vj\) is the unit vector in the positive
\(y\) -direction.
(c)
Use
equation (11.7.2) to find the derivative of
\(f\) in the direction of the vector
\(\vv = \langle 2, 3 \rangle\) at the point
\((1,-1)\text{.}\)
Hint .
Remember that a
unit direction vector is needed.
(d)
Find the derivative of
\(f\) in the direction of the vector
\(\vv = \langle 4, 6 \rangle\) at the point
\((1,-1)\text{.}\)
(e)
Use
equation (11.7.2) to find the derivative of
\(f\) in the direction of the vector
\(\vv = \langle -2, -3 \rangle\) at the point
\((1,-1)\text{.}\) Write a couple of sentences to explain why this result is different from your answer to the previous two tasks, even though the direction vectors are parallel.