Skip to main content
Contents Index
Calc
Dark Mode Prev Up Next
\(\newcommand{\R}{\mathbb{R}}
\newcommand{\va}{\vec{a}}
\newcommand{\vb}{\vec{b}}
\newcommand{\vc}{\vec{c}}
\newcommand{\vC}{\vec{C}}
\newcommand{\vd}{\vec{d}}
\newcommand{\ve}{\vec{e}}
\newcommand{\cursedihat}{\hat{\dot{i}}}
\newcommand{\vi}{\hat{\imath}}
\newcommand{\vj}{\hat{\jmath}}
\newcommand{\vk}{\hat{k}}
\newcommand{\vn}{\vec{n}}
\newcommand{\vm}{\vec{m}}
\newcommand{\vr}{\vec{r}}
\newcommand{\vs}{\vec{s}}
\newcommand{\vu}{\vec{u}}
\newcommand{\vv}{\vec{v}}
\newcommand{\vw}{\vec{w}}
\newcommand{\vx}{\vec{x}}
\newcommand{\vy}{\vec{y}}
\newcommand{\vz}{\vec{z}}
\newcommand{\vzero}{\vec{0}}
\newcommand{\vF}{\vec{F}}
\newcommand{\vG}{\vec{G}}
\newcommand{\vH}{\vec{H}}
\newcommand{\vR}{\vec{R}}
\newcommand{\vT}{\vec{T}}
\newcommand{\vN}{\vec{N}}
\newcommand{\vL}{\vec{L}}
\newcommand{\vB}{\vec{B}}
\newcommand{\vS}{\vec{S}}
\newcommand{\proj}{\text{proj}}
\newcommand{\comp}{\text{comp}}
\newcommand{\nin}{}
\newcommand{\vecmag}[1]{\left\lVert #1\right\rVert}
\newcommand{\grad}{\nabla}
\newcommand\restrict[1]{\raise-.5ex\hbox{$\Big|$}_{#1}}
\DeclareMathOperator{\curl}{curl}
\DeclareMathOperator{\divg}{div}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Activity 9.2.6 .
(a)
Let
\(\vu = \langle 2,3\rangle\) and
\(\vv = \langle -1,2\rangle\text{.}\) Find
\(\vecmag{\vu}\text{,}\) \(\vecmag{\vv}\text{,}\) and
\(\vecmag{\vu+\vv}\text{.}\) Is it true that
\(\vecmag{\vu+\vv} = \vecmag{\vu}+\vecmag{\vv}\text{?}\)
(b)
Under what conditions will
\(\vecmag{\vw_1+\vw_2} = \vecmag{\vw_1}+\vecmag{\vw_2}\text{?}\)
Hint .
Think about how
\(\vw_1\text{,}\) \(\vw_2\text{,}\) and
\(\vw_1+\vw_2\) form the sides of a triangle.
(c)
With the vector
\(\vu = \langle 2,3\rangle\text{,}\) find the lengths of
\(2\vu\text{,}\) \(3\vu\text{,}\) and
\(-2\vu\text{,}\) respectively, and use proper notation to label your results.
(d)
In general, if
\(t\) is any scalar, how will
\(\vecmag{t \vw}\) be related to
\(\vecmag{\vw}\text{?}\)
(e)
Of the vectors
\(\vi\text{,}\) \(\vj\text{,}\) and
\(\vi+\vj\text{,}\) which are unit vectors?
(f)
Find a unit vector
\(\vv\) whose direction is the same as
\(\vu = \langle -2, 3\rangle\text{.}\)
(g)
Find a unit vector
\(\vv\) in the opposite direction to
\(\vu = \langle -2, 3\rangle\text{.}\)