Skip to main content
Contents Index
Calc
Dark Mode Prev Up Next
\(\newcommand{\R}{\mathbb{R}}
\newcommand{\va}{\vec{a}}
\newcommand{\vb}{\vec{b}}
\newcommand{\vc}{\vec{c}}
\newcommand{\vC}{\vec{C}}
\newcommand{\vd}{\vec{d}}
\newcommand{\ve}{\vec{e}}
\newcommand{\cursedihat}{\hat{\dot{i}}}
\newcommand{\vi}{\hat{\imath}}
\newcommand{\vj}{\hat{\jmath}}
\newcommand{\vk}{\hat{k}}
\newcommand{\vn}{\vec{n}}
\newcommand{\vm}{\vec{m}}
\newcommand{\vr}{\vec{r}}
\newcommand{\vs}{\vec{s}}
\newcommand{\vu}{\vec{u}}
\newcommand{\vv}{\vec{v}}
\newcommand{\vw}{\vec{w}}
\newcommand{\vx}{\vec{x}}
\newcommand{\vy}{\vec{y}}
\newcommand{\vz}{\vec{z}}
\newcommand{\vzero}{\vec{0}}
\newcommand{\vF}{\vec{F}}
\newcommand{\vG}{\vec{G}}
\newcommand{\vH}{\vec{H}}
\newcommand{\vR}{\vec{R}}
\newcommand{\vT}{\vec{T}}
\newcommand{\vN}{\vec{N}}
\newcommand{\vL}{\vec{L}}
\newcommand{\vB}{\vec{B}}
\newcommand{\vS}{\vec{S}}
\newcommand{\proj}{\text{proj}}
\newcommand{\comp}{\text{comp}}
\newcommand{\nin}{}
\newcommand{\vecmag}[1]{\left\lVert #1\right\rVert}
\newcommand{\grad}{\nabla}
\newcommand\restrict[1]{\raise-.5ex\hbox{$\Big|$}_{#1}}
\DeclareMathOperator{\curl}{curl}
\DeclareMathOperator{\divg}{div}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Preview Activity 9.7.1 .
For each equation below, identify its graph in
Figure 9.7.1 . Note that there are more graphs than equations, so some graphs will not be selected. To help you with identification, you might consider looking for
\(x\) -intercepts,
\(y\) -intercepts, and values of a variable for which the graph contains no points.
\(\displaystyle \frac{x^2}{9}+\frac{y^2}{25}=1\)
\(\displaystyle \frac{x}{3}+\frac{y}{5}=1\)
\(\displaystyle \frac{y^2}{4}-\frac{x^2}{1}=1\)
\(\displaystyle \frac{y^2}{9}-\frac{x^2}{25}=0\)
\(\displaystyle \frac{x^2}{1}-\frac{y^2}{4}=1\)
ADD ALT TEXT TO THIS IMAGE
(a)
ADD ALT TEXT TO THIS IMAGE
(b)
ADD ALT TEXT TO THIS IMAGE
(c)
ADD ALT TEXT TO THIS IMAGE
(d)
ADD ALT TEXT TO THIS IMAGE
(e)
ADD ALT TEXT TO THIS IMAGE
(f)
ADD ALT TEXT TO THIS IMAGE
(g)
ADD ALT TEXT TO THIS IMAGE
(h)
Figure 9.7.1. A collection of graphs to match to equations